| 4 min read
Table of contents
As we have stated over and over in the past, the most critical step in our ongoing project of building a machine learning (ML) based code classifier will be that of representing the code as vectors. In our last article, we reviewed how this is done for natural language. We looked at simple, though inconvenient methods, such as one-hot and categorical encoding, which we actually used in our first classifier attempt. We also took a glimpse at the state of the art in vector representation of language, which is based on neural networks, called word2vec
.
Recall that this is a neural network which attempts to predict neighboring words from the central word. Its dataset is made up from a corpus, and the results will be very dependent on the sense of this text. While the task is certainly useful, we don’t care so much about the predictions, but rather about the weights which make up the network, which give us an intermediate representation. These are the vectors we are looking for to represent each word:
The vectors are implicit in the middle layer.
In turn, word2vec
is based on a more simple task: predict a vector from that same vector. Well, isn’t that just an identity function, mapping every object to itself? As it turns out, no, given that the weights in a neural network are randomly or arbitrarily initialized and will be optimized to the task in an iterative process. For this task, with a single hidden layer, we get something similar to word2vec
, called an autoencoder:
Autoencoder neural network via Carnegie Mellon.
Autoencoders turned out to be a foundational idea in neural network based dimension reduction, the task of representing high-dimensional objects (such as one-hot encoded words) as lower-dimensional vectors, while still retaining most of the useful information contained in it. Before that, most methods relied on matrix decompositions, but these tend to be computationally expensive and not scalable, thus not fit for representation of large codebases or natural language corpora.
Keeping these two neural network based ideas, namely that vector representations can be obtained from middle layers in networks designed for different, though seemingly frivolous tasks, one can begin to understand how vector representations of code might come to be. What will be the goal? Predicting the name of a function. What will be the input data? Not too surprisingly, it will be the code of the function whose name we would like to predict. In what form? That’s where the waters get a little murky, since there are so many ways to structure code, and so many representations to extract from it. Our readers might already be familiar with the Abstract Syntax Tree, Version Control (v.g., git
) history and the Control flow and program dependence graphs. One can even simply choose not to represent anything: consider the code as sequence of words without exploiting its syntax, and represent them as bags of words, as we did in our previous run. One could also look at the meta-code: metrics such as modified lines per commit, code churn, cyclomatic complexity, all of those could be thought of as possible candidates for inputs to a neural code classifier.
One of the most apt of such representations is the Abstract Syntax Tree (AST
), which is universal in the sense that it can be taken out of every language in existence, and could potentially be standardized so as to eliminate the language barrier. Indeed, this is the input representation chosen by the code2vec
authors. More specifically, they sample some paths in the AST
at random. The labels in the training phase, which would be the prediction targets later, are the function names. The objective is to predict meaningful function names from the function’s content. If the body is return input1 + input2
, it would seem obvious to a human to call that function add
or even give_sum
. However, this is not the case, as there are developers who give strange names to their identifiers and methods, such as perform_binary_operation1
. Maybe to make their code hilariously unmaintainable and keep their jobs forever, since nobody else would understand it; or just make it sound like it does more than in reality.
The network itself to predict the function names from the randomly-taken paths in their abstract syntax trees is a little more complicated than an autoencoder or a single-layer word2vec
network:
code2vec architecture. From Alon et al. (2018).
Notice that in this diagram, unlike most other seen here so far, the layers are the arrows, thus the objects are the intermediate products obtained after passing through the layers. Of course, we will be most interested in the green circles above, which are the code vectors we are looking for, and not so much in the final predictions. Not that the task of predicting function names is uninteresting, but it is not related to our interests. We only want the code vectors in order to pass them on to our classifier to determine the likelihood of containing security vulnerabilities.
Fortunately enough, code2vec
offers pre-trained models and others that can be further trained. So on my to-do list, the top priority now is to figure out how this works in detail and how to remove the final layer, the one that gives the prediction, and just keep the vectors. If that sounds interesting, stay tuned to our blog.
By the way, have you read our main blog post on secure code review?
References
-
U. Alon, M. Zilberstein, O. Levy, and E. Yahav. code2vec: Learning Distributed Representations of Code Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 40. January 2019.
-
Z. Chen and M. Monperrus. A literature study of embeddings on source code. arXiv.
Table of contents
Share
Recommended blog posts
You might be interested in the following related posts.
How it works and how it improves your security posture
Sophisticated web-based attacks and proactive measures
The importance of API security in this app-driven world
Protecting your cloud-based apps from cyber threats
Details on this trend and related data privacy concerns
A lesson of this global IT crash is to shift left
Users put their trust in you; they must be protected